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Abstract: The SPH method has extensively used in fluid flow simulation. Through SPH the fluid is modelled by
a particles system whose mutual interaction is weighed by a function, named kernel function, whose limits define
the neighbouring of each particle. In spite of the high capabilities of SPH for simulate complex environments, it
shows shortcomings specially if the fluid is subject to high changes in the pressure, the velocity and the density
as occur in phenomena such as shock–tube, blast–wave or in the boundary and discontinuities where the number
of neighbour particles is relatively low. In this case, the pressure gradient is inaccurate. As consequence, the
simulation is instable with an erratic behaviour of particles. To avoid this problem, we propose a hybrid technique.
This one consists in formulating the pressure gradient from a potential defined on each particles pair. Thus, the
pressure gradient is immune to the low number of neighbour particles. Also, our proposal allows enforcing the
fluid incompressibility. To show the improvements obtained we will carry out a set of simulations.

Key–Words: fluid simulation, SPH, stability, accuracy, potential–based.

1 Introduction
The fluid flow simulation plays an essential role in
several disciplines both the scientific and technical.
From an analytic point of view, it is formulated by
Fluid Mechanics that set the partial differential equa-
tions describing the fluid flow. However, its com-
plexity only allows obtaining analytic results for a
restricted set of cases with high spatial symmetry.
In most cases, the numerical methods must be used.
These ones are studied by Computational Fluid Dy-
namic (CFD). Through CFD, the partial differential
equations, are transformed into a set of algebraic
equations, whose solution allow simulating the fluid
flow. One of these methods is Smoothed Particle Hy-
drodynamics (SPH) which is widely used for its adapt-
ability and versatility [21, 32].

SPH operates on fluid discretization through par-
ticles that interact among themselves. Thus, it is based
on the Lagrangian formulation. Descriptively, each
particle depicts a discrete portion of the continuum
fluid and moves with the flow. In this methodology,
the dynamic quantities are fit on each particle and its
mutual interaction is weighed by a scalar function de-
pendent on distance. This function, known as ker-
nel function, must satisfy a set of analytical proper-
ties such as it must be monotonically decreasing, it
must be normalized and its domain, named supported

domain, should be limited. Each particle has got an
associated kernel function, whose supported domain
limits the number of neighbour particles.

The SPH method has highlight features such as
the conservation of mass [13, 19, 21], its adaptability
and versatility to simulate complex environments [19]
and the simplification of the formulation to solve the
fluid dynamic equations [9, 13]. Nevertheless, despite
these advantages, the simulation by SPH can show
stability problems that affect the realism of simula-
tion [3, 6, 28]. There are several instabilities types:
the local mixing instability (LMI) [25], the heating
instability [25], but the most remarkable is related to
pressure gradient [20, 24, 25]. The inaccuracy of pres-
sure gradient induces a tensile instability [14, 18, 21]
or pairing of particles [2, 3, 24].

There is a consensus that relates the instabil-
ity of pressure gradient and the number of neigh-
bouring particles, specially when this number is rel-
atively low or the particles distribution is not smooth
[3, 10, 21, 24, 28]. According the number of neigh-
bouring particles decreases, the inaccuracy of pres-
sure force is increased. Consequently, the particles
are scattered and show erratic behaviour. Usually, it
has been regarded that increasing the radius of the
supported domain the inaccuracy is reduced. Nev-
ertheless, the increase in the supported domain re-

WSEAS TRANSACTIONS on FLUID MECHANICS Juan J. Perea, Juan M. Cordero

E-ISSN: 2224-347X 50 Volume 13, 2018



duces the resolution and, as consequence, the accu-
racy [3, 21, 32]. Furthermore, there are regions, such
as the boundaries of fluid or its discontinuities, where
the number of neighbour particles cannot be increased
[28]. Other methodologies have been developed to
avoid the problems associated to the low number of
neighbouring. These techniques either reformulate
the dynamic equations modelled by SPH [21, 25] or
positioning control points to reduce the effects of the
external loads on the pressure gradient [4, 33]. Never-
theless, these proposals show shortcomings since can
violate the conservation of momentum [3, 16], partic-
ularly in boundaries and discontinuity regions. Also,
they are only effective under specific conditions, if
these conditions are not satisfied, an erroneous over-
damping is induced [3].

To avoid these shortcomings related to the pres-
sure force and the incompressibility enforcement,
we propose a hybrid technique potential–SPH. Suc-
cinctly, our proposal is based on a formulation of a
conservative potential that allow us to derive the pres-
sure force. The constraints to obtain this force has
the aim the improving the stability and accuracy spe-
cially in the discontinuities and boundary regions. On
the other hand, the formulated pressure force allow us
to enforce incompressibility without the need to use
a predictor–corrector process what improves the effi-
ciency. To show the improvements that our proposal
allows obtaining, we will carry out a set of test usually
used to quantify the stability and accuracy.

2 SPH Method
The SPH method, initially developed by Gingold and
Monaghan [5] and Lucy [11], was formulated from
the integral formulation of the delta Dirac function
[13].

f(r) =

∫
f(r′)δ(r − r′)dr′, (1)

where f depicts any scalar function and δ is the delta
Dirac function.

According to the interpolation theory, the func-
tion δ can be replaced by a function with spatial ex-
tension. Thus, the integral expression (1) can be re-
formulated by the below equation.

f(r) =

∫
Ω
f(r′)W (r − r′, h)dr′ +O(h2), (2)

where W is named the kernel function, Ω refers to the
volume of the definition domain of W and h is the
radius of the supported domain.

Regarding the kernel function, this one must sat-
isfy, at least, the following constraints:

1. It must be normalized and tend to δ when h tends
to zero, i.e:

lim
h→0

W (r − r′, h) = δ(r − r′);
∫
V
WdV ′ = 1.

(3)

2. It must be positive and decrease continuously
with (r − r′).

3. It must be symmetric with respect to (r − r′).

Quantitatively, the modelling of a continuous
medium using a particles system entails transforming
the integral, equation (2), by a sum where the mass of
each particle depicts a volume element whose mass is
ρdV , i.e:

〈f(r)〉 =

∫
Ω

f(r′)

ρ(r′)
W (r − r′, h)ρ(r′)dr′

≈
∑

j∈N (i)

mj
fj
ρj
W (rj − ri, h), (4)

where 〈〉 refers to the approximated value of function
f since the second order term has not been considered,
N (i) depicts the neighbour particles j of each particle
i and ρj is the mass density allocated to the particle j.

From the symmetry property (item 3), the gradi-
ent of any scalar magnitude f(r) can be simplified as:

〈∇f(r)〉 =
∂

∂r

∫
f(r′)

ρ(r′)
W (r − r′, h)ρ(r′)dr′

≈
∑

j∈N (i)

mj
fj
ρj
∇W (rj − ri, h). (5)

Generalizing the equation (5), it is possible to for-
mulate a valid equation for any differential order. This
generalized equation is:

〈∇lf(ri)〉 =
∑

j∈N (i)

mj
fj
ρj
∇lW (rj − ri, h), (6)

where l refers to the differential order equation.
It is noted that the equation (6) does not regard the

second order term [21]. Also, it violates the conserva-
tion of angular momentum [13]. As consequence, al-
though the equation (6) satisfies the SPH premises, the
accuracy of the obtained results can be compromised.
To prevent this issue, this equation must be modified
to be applied to fluid flow simulation, according is de-
scribed by [13]. Nevertheless, this symmetrical for-
mulation can increase the instability [2, 7, 21].
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3 Dynamic Equations
The dynamic of an incompressible and inviscid fluid,
whose flow evolves adiabatically with high Reynolds
number is described by the below PDEs system:

∇ · v = 0, (7)

Dv

Dt
= −1

ρ
(∇p) + F, (8)

where D/Dt = ∂/∂t+ v · ∇ refers to the convective
derivative, ρ is the mass density, v is the velocity, p is
the pressure and F depicts the body force vector per
unit volume.

To close this system of equations, it is necessary
to regard a relationship between the pressure and the
mass density. This relationship is set by the equation
of state (EOS). Although there are several formula-
tions of the EOS, in SPH is usually used Tait’s equa-
tion expressed as:

p = (γ − 1)ρ, (9)

where γ is the adiabatic index.
The modelling of the equations (7) and (8) by

SPH shows problems of stability and accuracy. To
solve these problems, several proposals have been de-
veloped [15, 21, 23, 30]. The most outstanding are the
research developed by Price [21], appointed as MPM,
and the technique described by Inutsuka [7] known as
GPSH.

Regarding the variational approach, Price [21]
models the equation (8) as:

dvi
dt

= −
∑

j∈N (i)

mj (χi∇Wij(hi) + χj∇Wij(hj)) +

∑
j∈N (i)

α
mi

ρij
vs vij · R̂ij∇W̃ij + F (10)

where the subscript i and j refers to particle i and j
respectively, χ = (Ω−1p/ρ2), Ω is a correction term
related to the smoothing length, R̂ij is the unit vector
defined by the line joining the particles i and j, W̃ij

is the averaged kernel and vs = ci + cj − vij · R̂ij .
In Price [21] is shown a detailed explanation of the
derivation of this equation.

On the other hand, the technique GSPH is seeking
to restore consistency for the discrete density estimate
by the kernel function convolutions using a Riemann
solver. According to the GSPH technique, the equa-
tion (8) is formulated as:

dvi
dt

= −
∑

j∈N (i)

mjp
∗
ij

[
V 2
ij(hi)∇Wij(hi

√
2)+

V 2
ij(hj)∇Wij(hj

√
2)
]

≈ −
∑

j∈N (i)

mjp
∗
ij

(
1

ρ2
i

∇W̃ij
1

ρ2
j

∇W̃ij

)
+ F (11)

where p∗ is the intermediate pressure arising from the
solution of a Riemman solver particularized to the par-
ticles pair i, j and Vij are the intermediate velocities
related to the solution of Riemann solver particular-
ized to two particles [24]. The papers [7, 8] show a
detailed explanation of the derivation of the equation
(11).

4 Proposed Model
In this section, it will be described the features of
our proposal to improve the stability and accuracy of
SPH simulations. Firstly, the fundamental hypothe-
sis of the model will be set. From this hypothesis
will be formulated our proposal to obtain the pres-
sure force. Next, it will be described the analytic fea-
tures that should be satisfied by the pressure force to
guarantee stability. These features are set from the
most outstanding studies in stable simulations scope
by SPH. From these constraints and the fundamental
hypothesis, it will be formulated the pressure force.
Its formulation will allow enforcing the incompress-
ibility. Once the incompressibility is enforced, it will
be explained the process to calculate the density us-
ing both the SPH formulation and the pressure force.
This joined formulation allows fulfilling the incom-
pressibility constraint.

Analytically, when external forces acting on a
fluid, the distances between adjacent regions change.
Then, into the fluid appears a force that tends to re-
store the balance conditions [34]. This internal force
is quantified by the pressure gradient. Extrapolating
this criterion to the modelled fluid by a particle sys-
tem, we can formulate our fundamental hypothesis,
namely: the pressure force is due to change of the dis-
tance between particles.

Taking into account this premise, we avoid the
problems of stability related to modelling of the pres-
sure gradient by SPH, especially when the number
of neighboring particles is low [3, 22]. Furthermore,
we can enforce the incompressibility constraint on the
pressure force and the density. On the other hand, as
the force only depends on distance, we can formulate
it from a conservative potential [34]. Nevertheless,
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any conservative potential is not valid to obtain stable
fluid simulations. To set a suitable formulation must
be taking into account the constraints that guarantee
the stability. These constraints it will be described be-
low.

4.1 Pressure Force
Several research have been carried out to set the rela-
tionship between stability–accuracy and the pressure
gradient. The most highlighting studies assert that the
pressure force:

1. It should ensure stability for a wide range of
the number of neighbour particles. This feature
can be deduced from the studies developed by
[3, 12, 21, 28]. These research assert that if the
number of particles is too low, the simulations
show an erratic scattering of particles, mainly in
the boundary of fluid. On the other hand, if the
number of particles is high, a clustering of parti-
cles can appear.

2. It should be concave in respect of the abscissa
axis. This constraint is deduced from the re-
search developed by [1, 3, 24], where is de-
scribed that a kernel function whose gradient,
that appear in pressure force, shows an inflection
point and concavity, improve the stability.

3. It should show an asymmetric profile with regard
to the minimum value of the force. Thus, two
requirements are satisfied: firstly, the repulsive
force is increased when the distance is decreased,
as it can be deduced from [9] and lastly, the in-
teraction can be weighed by the distance, as is
suggested by [3, 21]. A harmonic force can only
satisfy the first condition but it would not ensure
the last one [21].

4. It should allow us to enforce the incompressibil-
ity [12, 28], namely, its formulation should limit
the minimum distance among particles. Thus,
the formulated force should show an asymptotic
behavior with distance. Its aim would be to avoid
that the distance between particles will be incom-
patible with incompressibility constraint.

From these features, we formulate the conserva-
tive potential, from which, we will obtain the pressure
force. The proposed potential is:

Vi(ri) =
21

24πhi

∑
j∈N (i)

(
2

(Rij − 0.9ε)2−

7π2

2ζ (Rij − (0.85ε))
+ (3π2σ)

)
, (12)

where Rij = rj − ri, ε is named as asymptotic factor,
that allows us to control the incompressibility rate, ζ
is appointed as depth factor, by this magnitude, we
can avoid the particles clustering and σ is named as
tail coefficient, by means of this coefficient, it is pos-
sible to control the potential at the boundary of the
supported domain. Empirically, we have evaluated the
value range, of these parameters, that offer the best re-
sults, these values are: 0.3h ≤ ε ≤ h, 0.5 ≤ ζ ≤ 2.0
and 0.8 ≤ σ ≤ 2.25. The Figure 1 shows the profile
of the formulated potential.

Figure 1: Graph of the proposed potential. The pa-
rameter values are h = 3, ε = 0.6, ζ = 1.25 and
σ = 1.0.

Analytically the potential, equation (12), only de-
pends on position. As consequence, the force that is
derived can be written as ~Fpi = −∇V (ri), i.e:

~Fpi = − 5.25

6πhi

∑
j∈N (i)

(
3.5π2

ζ (Rij − (0.85ε))2−

4

(Rij − 0.9ε)3

)
(h−Rij)

~Rij

Rij
, (13)

From the Figure 1, we can describe the features of
our proposed potential. Firstly, it shows a concavity in
respect of the abscissa, as it was established in item 2.
Secondly, it shows an asymmetric profile with respect
to minimum of force, according to the item 3. Lastly,
as a consequence of asymptotic limit, for low values
of r, we can control the incompressibility, as it was
required in item 4. It is noted, as consequence of the
pressure force is derived from this potential, this fea-
tures will be inherited. On the other hand, analyzing
the equation (13) we can say that the force is saturated
with the distance [34]. Furthermore, this saturation is
weighed by the distance. Thus, the pressure force sat-
isfies the constraint suggested by [3, 13, 17, 32]. Also,
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the force formulated in equation (13) satisfies the con-
servation of momentum.

Then, once the pressure force has been obtained,
we are going to describe our proposal to control the
incompressibility, taking advantage of the asymptotic
limit shown by the formulated pressure force.

Due to the fact that the pressure force is obtained
from a potential, our technique will hereinafter be re-
ferred to as P–SPH.

4.2 The Enforcement of the Incompressibil-
ity

Qualitatively, the incompressibility is related to the
maximum force that can be borne by the fluid, without
changing its local volume [34]. According to this fact,
the incompressibility in a fluid modelled by a particle
system can be explained as the minimum distance that
the particles can approach. In this context, the force
calculated by the equation (13), allows us to model
the incompressibility by the asymptotic value when R
is low. Nevertheless, if the incompressibility coeffi-
cient is lower than 2%, we must introduce a control
process to reduce the numerical errors accumulated in
each time step.

Our proposal to control the incompressibility
when its coefficient lower than 2% can be divided into
two stages. In the first stage, the pressure force is
calculated by the equation (13). In the last stage, we
check the particles whose pressure force violates the
incompressibility constraint. If the pressure force of
any particle violates the incompressibility constraint,
then the force excess is quantified and both the dy-
namic and the position of these particles are modified
to satisfy the incompressibility constraint.

To implement this process, firstly we calculate the
maximum compression force, namely, the value from
which the incompressibility constraint is violated. To
this end, we particularize the equation (13) with a dis-
tance, whose value is in line with the rest density fluid.
According to this description, the obtained equation
is:

~FC
j|i = −5.25

6πh

(
3.5π2

ζ (ξ − (0.85ε))2 −
4

(ξ − 0.9ε)3

)
~R

R
,

(14)
where ~FC

j|i is the maximum of compression force that
the particle j can acquire in respect to particle i and ξ
is the minimum distance that the particle j can ap-
proximate of particle i without violates the incom-
pressibility. The equation that satisfies this criteria is:

ξ = 3

√
3m

4π(1− η)ρ0
, (15)

where η is the compressibility coefficient and ρ0 is the
rest density.

If |~FC
j|i| > |~Fpj|i |, then, we have to control the

incompressibility. Thus, we change the force of the
particle j and its position, to the maximum tolerated
values, i.e.:

~Fpj|i = ~FC
pj|i

y ~r′j = ξ
~R

R
, (16)

where ~Fpj|i is the pressure force of particle j in respect
to particle i and ~r′j is its new position.This change only
is valid if the difference between |FC

pj|i
| and |FC

pj|i
| is

lower than 5%. Although this limitation seems restric-
tive, as the pressure force control the incompressibil-
ity, it allows us that the difference between two forces
is lower than this value.

5 Results
In this section, we will carry out a set of tests to show
the improvements that offer our proposal. To that
end, we will simulate a fluid whose dynamic is de-
scribed by the equations (7) and (8). To solve this sys-
tem of equations, it will be regarded the techniques
MPM [21], GSPH [7] and P–SPH. The aim is to com-
pare the obtained results from each technique to show
the improvement that can be obtained by the pro-
posed technique. It will be implemented three tests
commonly used to quantify the stability and accuracy
[24, 26, 27], these are: settling of a random particles
distribution, Sod’s shock–tube and blast–wave. In
each test, we will carry out an analysis of the range
of the number of neighbour particles where each tech-
nique is stable.

We have regarded the most of the values of sim-
ulation parameters suggested by [24]. Each test has
different values that be specified in each simulation.
Nevertheless, in all them, the value of the adiabatic
parameter γ, equation (9), will be γ = 1, 46. Regard-
ing our proposed pressure force, equation (13), the se-
lected values of ε and ζ are ε = 0.45 and ζ = 1.0.
Likewise, all simulations will be implemented using
a Wendland C4 as kernel function. We have selected
this function due to its analytic features that favour the
stability and accuracy, according is highlighted by [3].

5.1 Settling of a Random Particles Distribu-
tion

Several research show a consensous which regards the
settling of a random particle distribution as a suitable
test to quantify the stability in SPH [3, 21, 29]. De-
scriptively, in this test, a particles system evolve from
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P-SPH

Figure 2: Evolution from a random particles distribution to a settled particles distribution.

a random distribution to a state that shows a level of
regularity. The achieved regularity allows quantifying
the stability degree of any SPH simulation [21, 24].

To implement this test, we have used 980 particles
whose mass is m = 0.00213. The simulation limits
are [50 × 30] and the time step used ∆t = 1.5 10−4s
and h = 0.023. From this values, we have obtained
the simulation shown in Figure 2.

To analyse the range of the number of neighbour
particle that allow obtaining stable and accuracy sim-
ulation, we have changed from the lowest number to
highest. In this test, the used values are:

MPM GSPH P–SPH
Ni 120–375 95–375 15–375
Ni 180 165 25

Table 1: Range of the number of neighbour particles.
Ni refers to range that allows stability and Ni is the
value regarded to obtain the simulations shown in Fig-
ure 2.

From the Figure 2, we can say that the best result
is obtained from P–SPH. This one allows obtaining
the results of the highest regularity. To quantify this
lattice degree, we have formulated an order parameter
ς that satisfies:

ς =

∑s
k=1(|dl − dkij |)

s
, (17)

where s = (m− 1)(n− 1), and m and n are the par-
ticles number in each space direction, dl is the lattice
length, dkij is the distance between each pair of neigh-
bour particles. From the formulation of the parameter
ς , it can be said that the lower value, the more lattice

degree is achieved and, consequently, the more stabil-
ity is obtained.

The obtained values of this parameter are shown
in Table 2.

MPM GSPH P–SPH
ς 21.7 16.4 4.7

Table 2: Obtained values of the order parameter from
Figure 2.

5.2 Sod’s Tube–Shock Test
Sod’s shock–tube test [27] allow quantifying the accu-
racy and stability of SPH [10, 14, 26]. Descriptively,
the shock–tube test is built by a tube where a non–
porous membrane is introduced. This membrane de-
fines two sections that are filled with gas. In a section,
that is named as high section, the gas is around 10
times denser and more confined than in the other sec-
tion which is named low section. From these initial
constraints, the membrane is instantly taken away, at
t = 0. At this moment, due to differences of pressure
and density between high–low sections, a shock wave
is generated. This one evolves into the low section.
At the same time, a rarefaction wave appears into the
high section. Between each wave, a contact disconti-
nuity is arisen. Quantitetively, from the obtained ac-
curacy in the simulation of these three regions, it is
possible to quantify the suitability of the used tech-
nique.

To carry out this test we have used a domain
[-0.5, 0.5]. The low section is limited between
[ -0.5, 0.0) and the high section is limited by
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(a) (b) (c)

(d) (e) (f)

Figure 3: Comparative graphs of the exact solution and numerical obtained values from MPM, GSPH and P-SPH
for Sod’s shock–tube test.

(0.0, 0.5] . The remaining used paremeters are the
suggested by [24].

From these initial values, we have obtained the re-
sults shown in Figure 3 at time t = 0.15. It is regarded
the density and the velocity to evaluate the obtain ac-
curacy, according to the suggestion given by [24, 26].

The Figure 3 shows a comparison between the
exact solution, solid line, and the numerical solution
shows as dots.

In each graphs, it is possible to identify three re-
gion: the contact discontinuity, the rarefaction wave
and the shock wave. The contact discontinuity appears
around xcd = 1.004, the rarefaction wave appear from
x < xcd and the shock wave from x > xcd. Although
the position of the contact discontinuity is the same in
all graphs, both the spatial width of the contact dis-
continuity and its waving, shows significant discrep-
ancies.

To quantify the obtained accuracy, we have se-
lected the numeric values of each part of the flow,
i.e., rarefaction wave, contact discontinuity and shock
wave, specifically the width that are appointed as: Wrt

the width of the rarefaction tail, Wcd the width of
contact discontinuity and Wsw the width of the shock
wave. The obtained values are shown in Tables 3 and
4.

5.3 Blast–Wave Test
The blast–wave test is a more extreme version of
Sod’s shock–tube test and is formulated for a very

MPM GSPH P–SPH
r2 0.9651 0.9708 0.9891
Wrt 0.105 0.073 0.0205
Wcd 0.078 0.061 0.026
Wsw 0.128 0.104 0.051

Table 3: The most relevant values associated with the
density graphs of Sod’s shock–tube test, Figs. 3a, 3b
and 3c.

MPM GSPH P–SPH
r2 0.9651 0.9688 0.9891
Wrt 0.126 0.099 0.039
Wcd 0.101 0.075 0.043
Wsw 0.089 0.065 0.037

Table 4: The most relevant values associated with the
velocity graphs of Sod’s shock–tube test, Figs. 3d, 3e
and 3f.

high Mach number, around M = 200. It was de-
veloped by Woodward and Colella [31] to highlight
the behaviour of the contact discontinuity, mainly for
the velocity, at high density and pressure values. In
blast–wave test, the flow evolution shows the same
features that Sod’s shock–tube test, namely, a contact
discontinuity will appear inserted between the shock
wave and the rarefaction wave.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Comparative graphs of the exact solution and numerical obtained values from MPM, GSPH and P-SPH
for blast–wave test.

As a result of the similarities with Sod’s shock–
tube test, we have only changed the initial values
of some simulation parameters. The new values
of mass density, pressure and thermal energy are:
(ρh, ph, uh) = (1.0, 1 103, 0.0) and (ρl, pl, ul) =
(1.0, 0.01, 0.0), according to the suggestions given by
[26, 31]. The new time step is ∆t = 8 10−5. Us-
ing these values, we have obtained the results that are
shown in Figure 4 at time t = 7.5 10−4, where the
exact solutions and numeric solutions are depicted by
solid line and dots, respectively.

Similarly to Sod’s shock–tube test, the three re-
gions that arise when the membrane is taken away
can be located in the graphs of Figure 4: the contact
discontinuity position xcd = 0.1081, the rarefaction
wave x < xcd and the shock wave x > xcd. Likewise,
in each graph of 4 the width of contact discontinu-
ity changes for technique obtaining the lowest width
when our proposal is implemented.

Analogously as the previous section 5.2 to shown
the obtained accuracy, we have selected the most rele-
vant values associated to the graphs of 4. These values
are shown in Tables 5 and 6.

6 Conclusions
In this paper, we have reviewed some of the most
relevant features that influence on the accuracy and
stability of flow simulation by SPH. From these fea-

MPM GSPH P–SPH
r2 0.9618 0.9791 0.9903
Wrt 0.094 0.081 0.046
Wcd 0.035 0.018 0.009
Wsw 0.094 0.079 0.038

Table 5: The most relevant values associated with the
density graphs of blast–wave shock test, Figs. 4a, 4b
and 4c.

MPM GSPH P–SPH
r2 0.9621 0.9788 0.9901
Wrt 0.0945 0.0813 0.0585
Wcd 0.0826 0.0582 0.0348
Wsw 0.087 0.026 0.009

Table 6: The most relevant values associated with the
velocity graphs of blast–wave test, Figs. 4d, 4e and
4f.

tures, we have proposed a hybrid potential–SPH based
method. To show the improvements obtained by the
proposed technique, we have implemented a set of
tests using an incompressible and inviscid fluid. In
each implemented test we have compared our pro-
posal with the MPM and GSPH techniques which are
formulated to avoid the instabilities related to the pres-
sure gradient. Particularly, analysing the tests’ results,
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we can conclude:

1. The P-SPH technique allows us to obtain a
high stability. This conclusion can be deduced
from the obtained results in settling test, Figure
2, where the obtained results by P-SPH show
greater lattice degree than the obtained ones by
the other two techniques. Quantitatively, this im-
provement is shown by the results of the param-
eter ς , Table 2, where the obtained values by P-
SPH are the lowest ones.

2. The P-SPH allow us to obtain highly accurate re-
sults in simulations where the shock wave and
contact discontinuity appear. This affirmation is
based on the obtained results in Sod’s shock–tube
test. The obtained graphs of the density and ve-
locity, Figure 3, are more accurately simulated
by P-SPH than by MPM or GSPH. This accu-
racy is more apparent in the rarefaction tail, the
contact discontinuity and the shock wave. To re-
inforce this fact, we have selected the values as-
sociated to these regions that are shown in Tables
3 and 4. All obtained values evidence that the
best accuracy is offered by P-SPH.

3. The improvements obtained in Sod’s shock–tube
test is also accomplished in a more extreme ver-
sion of this test. This conclusion can be obtained
from the results shown in the blast–wave test.
Qualitatively, the obtained results are in agree-
ment with the exact solutions. Nevertheless, the
most accurate results are obtained by the P-SPH,
as can be seen in the graphs of Figure 4. Quanti-
tatively, the improvement is shown in the values
of Tables 5 and 6.

4. The P-SPH allow us to obtain stable simulations
for a wide range of the number of neighbour par-
ticles. Also, the stability is achieved with the
lowest number, as consequence. The P–SPH not
only favour the stability but also the efficiency,
from the computational cost point of view. This
conclusion can be deduced from Table 1.

From these results, we can conclude that the P-
SPH improves both the stability and the accuracy of
fluid flow simulations by SPH
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